abstract 104
Bulletin of Computational Applied Mathematics (Bull CompAMa)
Bulletin of Computational Applied Mathematics (Bull CompAMa)
104
m-Biharmonic Kirchhoff-type equation with singularity and critical exponent (Research Paper)
Juan Ricardo Mayorga Zambrano, Christian Calle-Cárdenas, Josué Castillo-Jaramillo.
We consider the m-biharmonic Kirchhoff-type integro-differential equation
\Delta_{m}^{2} u-\left[ a \left( \int_{\Omega}\mid\nabla u(y)\mid^{m} d y \right)^{m-1}+b\right] \Delta_{m} u \\
\qquad + c | u|^{m-2}u = f(x) | u|^{-\gamma}-\lambda| u|^{p-2} u, \qquad x\in \Omega, \\
u = \Delta u = 0, \qquad \qquad\qquad\qquad\qquad\quad\qquad \:\:\:\:\: x\in \partial \Omega,
(Pm)
where $\Omega \subseteq \mathbb{R}^\mathrm{N}$ is a smooth bounded domain, $N\geq 3$, $\Delta_m^2$ is the $m$-biharmonic operator, $\gamma\in ]0,1[$, $a, b, c, \lambda\in ]0,+\infty[$, $p\in]1-\gamma, m^{**}]$, $f\in \mathrm{L}^q(\Omega)$ is a.e. positive, $q=m^{**}/(m^{**}+\gamma-1)$ and $m^{**} = mN/(N-2m)$ if $1<m<N/2$, and $m^{**}=+\infty$ if $m\geq N/2$. Even though the energy functional associated to (Pm) presents a singularity and, as a consequence, is not Fréchet differentiable, it's proved by a direct method - including the case of Sobolev critical exponent - that (Pm) has a positive ground-state solution.
Keywords: Kirchhoff-type equation; m-biharmonic operator; integro-differential equation; critical Sobolev exponent.
Cite this paper:
Mayorga-Zambrano J.R., Calle-Cárdenas C., Castillo-Jaramillo J.
m-Biharmonic Kirchhoff-type equation with singularity and critical exponent,
Bull. Comput. Appl. Math. (Bull CompAMa),
Vol. 12, No.2 pp.129-146, 2024.